Qualitative theory of differential equations and

structural stability

M. M. Peixoto

1. Introduction.

The qualitative or geometrical theory of ordinary dif
Terential equations -- as opposed or better complementary to the
quantitative, numerical or analytical theory -- was considered for
the first time, in 1881, by Poincaré in his famous mémoire "Sur les
courbes définies par une &quation différentielle” [13]. This paper
was 80 ahead of its time in scope and outlook that two or three

decades had to pass before it began to be assimilated and progress

beyond it was possible. Even today browsing through the memoire

may be rewarding for the working methematician for here and
there he is apt to find at some dark corner -- and there are many in thig
vast edifice-- a meaningful problem or an idea worth polishing.

Tili his death in 1912 Poincare kept a keen interest iﬁ

some aspects of this subject, especially that part related to Celestial
Mechanics [14}. That work was carried on by G. D. Birkhoff [5] who
wrote extensively in this area. It is well known how in 19135 the young

Birkhoff scquired sudden fame by solving a question on fixed points proposed
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by Poincare in his last paper and which appeared in his investigations
on the three body problem. |

In the hands of Poincare, Birkhoff and Liapunov many'ouf-
standing qualitative results about differential equations were

obtained and many basic concepts were established.

However only recently has the qualitative éheory beenrpﬁf
on a solid basis wi%h the formulation by Smale [17] of the fundamental
problem of the theory as a fairly precise mathematical problem. In-
strumental in this formulation was the concept of structural stability,
in the sense that the role played by structurally stable systems on
the disc B2 suggested what to look for in the general case.

These recent developments of the qualitative theory were
very much influenced by the methods and ideas of Differential Topology,
specially Thom's transversality [25]. There seems to be little doubt
however that more than tranversality is involved when we have to deal
with the all important recurrent trajectories, as in the problem of
the closing Lemma mentioned below.

In this survey we first give an account on how the_formulation
of the fundamental problem fits with previous developments and of its
present status. Then we announce a few results and make several com-
ments and conjectures, all related to the place of structural stability
in the general picturé of the qualitative theory. In particular we consider
the role of first integrals and reﬁark that a theorem of Thom about

em follows easily from a general density theorem.
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At present it is not known how important the conecept of
structural stability will turn out to be for the gualitative theory.
A non density example of Smale [ 18] shows that it is not going to
be all important for the fundamental problem in dimension n Z k4,

In a much more general setting than the strictly mathematical
one considered here Thom is writing a highly original and daring
book on structural stability. Undisturbed by Smale’s example he
sees structural stability, broadly understood as the preservation
of gqualitative features under small perturbation, as an axiom to be
put on any model of a natural process, a kind/zgrphological substractum
of natural law. Something that has to do with the cresting of sea

waves, with the way liquids mix, with biological order and growth,

and so forth.



2. Qualitativc theory: the fundamentzl problem.

We are concérned with ordinary differential equations, also
called vector fields or dynamical systems defined on a finite dimen-
sional manifold M . Poincare was the first fo consider differential
equations defined in menifolds other than Fuclidean space and to
prove theorems of a global and qualitative nature about them. He

never tried to meke precise what one should understand by "qualitative".

For our purpose'here it is relevant to mention that the
idea of "genericity", that one should look for situations that are
present for most values of the "coeficients" is mentioned many times
in Poincare's memoire. In particular the concept of generic singularity
(for which the eigenvalues of the Jacobian matrix have non-zero real
parts) and the similar one of generic closed orbit are formulated by
him. He was also aware of what today we call the stable and unstable

manifolds associated to these elements and even of the much more subtle
concept of homoclinic point {1k, Vol. 3, 20].

Below we indicate some further steps that were taken by
different authors at different times and which resulted in the for-
mulation mentioned above, of the fundamental problem of the qualita-

tive theory of differential eguations.

(2.1) 1In 1924 H. Kneser [7] considered certain types of
differential equations on the torus T2 and said that two of them
X and Y were equivalent, X ~ Y, if a homeomorphism h: T2 —9T2
could be found such that h maps trajectories of X onto trajectories

of Y. He then classified these differential equations, i.e.,




exhibited the corresponding equivalence classes. To the author's
knowledge this was the first step towards a clarification of what
onc should understand by qualitative behavior.

(2.2) In 1937 A. Andronov and L. Pontrjagin [l] considered
differential equations on the ball B? and said that a system X
is "rough" if by perturbing it slightly in the Cl-sense then one
gets a system Y ~ X (in the above sense) and the corresponding
homeomorphism can be made arbitrarily small by taking Y close enough
to X. Then they gave a set of conditions as being necessary and
sufficient for X +to be rough. These conditions turn out to exclude
complicated behavior for the trajectories of X; we will come again
to this point later. Questions of this type in many special instances

.were at that time considered by soviet engineers.

It seems that Lefschetz [2,8] was the first to realize that
here was an important mathematical concept that required further investigation.

Translating rough by the much better sounding "structurally stable" he exhibited

the true meaning of the new concept namely a fusion of the two concepts

of stability and qualitative behavior in the sense of topological equivalence.
(2.3) In 194% W. Kaplan [6] in his thesis gave a complete

classification of all equivalence (in the above sense) classés of

differential equations on R2 having no singularities, reducing this complex

problem (there are non countable many equivalence classes) to a purely algebraic
and
/combinationial questions To this day Kaplan's classification seems

to be the deepest result of this type. One should mention that in
L. Markus thesis [ 9] Kaplan's methods were extended to certain types

2 .
of equations on R with singutarities.
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(2.4) In 1959 the author [10] considered the situation
treated by Andronov and Yontriagin i.e., structural stability on B2
(the case with Sg' is the same) and showed that by
making a metric spéce Z out of the set of all differential equations
(with the Cl-topology) the ones which are structurally stable
2. constitute a set which is open and dense in % and besides they
exhibit very simple qualitative features. In other words "almost all"
differential equations in 82 are very simple as far as the topological
behavior of trajectories go.

(2.5) The next important step was taken by Smale [17]. Let
% be the space of all vector fields on a compact differentiable mani-
fold M with the C'-topology r Z 1.

The fundamental problem of the qualitative theory of differential
equations on M ig: to exhibit in % a dense subset such that the
features of the corresponding systems are simple enough as to make
them amenable to classification.

There are two points that need comment here. First that
one should not try to classify all systems on % ©because this is too
difficult. One is easily convinced of that by considering the vector
fields on Sl: to‘classify these vector fields amounts to ciassify
the closed sets on Sl. The second point is that one should not
nécessarily insist on a classification with respect to the equivalence
relation ~ of a homeomorphism mapping trajectories onto trajectories.
If one insists in classifying a dense family one might settle for

something weaker than ~ .



The point then in Smale's formulation is the combinétion
of the simultaneous requirements of "genericity", to be understooa
in the precise sense of density in % and "simplicity" to:be under-
stood in the somewhat vague sense of features'simple enough as to
lead to a classification.

No small credit is due to Smale for having realized im-
mediately that what was significant in the 52 cagse was the simultaneous
presence of these two features and that the added feature of

and important on its own
structural stability, enticing/as it might be, was not necessarily
relevant to the big goal and might well not be present in
general. We now know that his original intuition  was correct for
he pfoved recently [18] that on a certain compact Mu there are
systems that can not be ag;roximated by structurally stable ones.
eep

In [19] Smale gives many/insights and makes several conjectures that

are relevant for the fundamental problem.

(2.6) The fundamental problem can also be formulated in
a similar way, if we restrict the class of fields ¥ wunder consideration

to0, say Hamiltonian systems, polynomial systems and so on. On the

b4

other hand one might also consider the same approachbto more general
problems, say the study of actions of Rp, p > 1, or a manifold, or
the study of Pfaffian forms. Both are very difficult problems and
the day seems to be far off when we will have of either of these

situations a knowledge comparable to the one we have now of vector

fields.



5. Btructural stability.

On a compact differentiable manifold M a vector field
x € ¥ 1is sald to be structurally stable if given € > 0 one may
find & >0 such that whenever p(X,Y) < ® then Y ~ X and the
corresponding homeomorphism is within € from the identity. Here
p is a metric in % and in Mp we assume that these is also a
metric. Opne might give also a simpler definition involving no €:
X is structurally stable whenever there is & >0 suqh that

o(X,Y) < & implies X ~ Y. In [11] the author proved that for



n = 2 these definition are equivalent. Calling = C % the set of
=
structurally stable systems, n = 2,/£e—pigved also the following two
facts
(3.1) X € & if and only if X satisfies:
a) singularities and closed orbits are generic

b) no trajectory connects two saddle points

¢) the - and w-limit sets of any trajectory is either

a singular point or a closed orbit.

(3.2) the subset of % satisfying condition ( 3.1) is open

and dense in %.

Since the system satisfying (3.1) exhibit a fairly simple structure
the problem of classifying them into equivalence classes modulo
homeomorphisms preserving trajectories offers no essential difficulty.
The fundamental problem for compact M? can then be considered to be
solved. The fact that it was done through the concept of structural
stability gave some Weight to this concept and it was natural to
wonder whether or not in high dimensions £ would be dense in %.
Some indication in this direction was given by examples of Smale [20] and
Anosov [4] exhibiting, for n > 2, structural stable systems with
infinitely many closed orbits, a fact that can not happen if n = 2.
As we mentioned above Smale proved recently that on a certain M ,

2, 1s not dense in % so that structural stability is too restictive

a notion to be the answer to the fundamental problem.



Still, due to the obvious physical implication of this
concept, it or perhaps some weaker version of it (relaxing the
requirement of a homeomorphism mapping trajectories onto trajectories)
seems to play a role in clarifying the qualitative theory of dif-
ferential equations. |

For one thing, progress in this theory seems to be essential
in order to have a good basis for the so called "theory of bifurcation”.
Points of bifurcation are, in a space of parameters, points where
the topological structure changes abruptly i.e. where structurally
stability fails. A beginning in this direction is the work of J.

Sotomayor [23] where for n = 2 he considers the structure of Banach
manifold of codimension 1 that exists in a certain subset of % - .

"general

This has lead him to characterize the arcs in % which are in
position with respect to Z". Sotomayor needs % with the Cr-topology, r z 3,
Somehow related to this, in the sense that it gives some

information about the geometry of X is the following theorem which

we state here without proof.

(3.3) Theorem. If n=2 and X € & then the fundamental group of
2 at X can be computed once we know the singularities and closed

orbits of X; it 1s always finitely generated.

In dimension n > 2 very little is as yet known about
structurally stable systems, the conjectures in [19] are still open.

The following proposition seems to be true but at the present moment



the anthor has no formal proof of it.

(3.4) If for n> 2 X is structurally stable thep every

minimal set p of X which is not a singular point has dimension 1.

The reason for this 1s the following lemma whose proof

offers no difficulty. Assume u is a minimal set of dimension 1.

(3.5) Lemma. Given a point p € B one can find a flow-box F2 p
(it can be made arbitrarily small) which is "transversed to u".
By this it is meant that p Intersects OF only at the two faces

which are transversal to the flow, keeping from the others

at a distance which is bounded away from zZero. This lemma implies
that one can always find a cross-section about a point p € u where

all the features of p are present, as in the case of a closed orbits

the intersection of u  with the cross section is a Cantor set.

I, The General Density Theorem, the closing Lemma.

One basic step in the direction of the fundamental problem
is to generalize (3.2) for dimension n >2 i.e. to exhibit a number
of generic properties of differential equations i.e. properties
which are satisfies by a set ﬁi C % and which impose on the dif-
ferential equations a certain amount of order and regularity. Hope-
fully af'ter a reasonable number of these properties has been discovered
one has an understanding of the main features of the differential
equations involved, which will lead to a classification. At the

present moment the best result on this line is the theorem below.
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Before stating it we recall a concept due to Birkhoff. Let wt:M - M
be the one-parameter group ofmdiffeomorphisms generated by a vector
field X on M. A point pe M is said to.be non wandering if
given any neighborhood U of p then there are arbitrarily large
values of t for which UN@,(U) # . Calling Q the set of all
non wandering points it is easy to see that € is compact, invariant

through X and contains the « and w limit sets of every trajectory

of X.

(4.1) General Density Theorem. Let % be the set of all vector

fields on Mp, with the Cl-topology and let 4? C % %be the subset
of those for which the following Gi‘—properties are satisfied.

Gt the singularities are generic, and so finite in

1t
- nunmber

GE: the closed orbits are generic

G5: the stable and unstable manifolds associated to the

singularities and closed orbits are transversal.
Gh: =T , where I' stands for the union of all singular

points and closed orbits of the vector field.

Then ‘1? is residusl in %.

A subset of % is residual if it contains a subset which is a countable
intersection of subsets of % which are open and dense in %. In

particular ff is dense in % since % 1is a Baire space.
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The GDT as far as Gi’ i £ 3, are concerned is due to
Kupka and Smale, see [12] for a streamlined presentation. Then we have
residuality éven though we assume the Cr-topology, r &1, ip %. The part
concerning Gh is due to C.Pugh [15,16] and it is responsible for the restriction
r = l. A weaker form of Gh’ in this context,was conjectured by
Smale [197.

For n = 2, a previous theorem of the author [11l] gives
a result stronger than the above GDT for then we know that 'gf con-
tains a set which is open and dense and in % we may have the
Cr-topology, r 2 1. Conversely, as has been pointed out by Pugh (see
these Proceedings), if n = 2 the GDT plus a little extra work implies
the above theocrem for r = 1.

For n > 2 as a consequence of an example of Smale mentioned
above [18] it follows that E? does not contain a set open and dense in
%Z. But it seems likely that the above GDT is also true for r > 1; if so,
this would have a healthy effect of further developments of this theory.
As mentioned before questions of bifﬁrcaéion require r Z 3.

The restriction r = 1 comes from the fact that in order

to show that the set of fields satisfying Gh is residual one is
faced with the pfoblem of the closing Lemma. This, as generalized

by Pugh, is as follows: given a non wandering point p € M of X,

to find an arbitrarily Cr-small AX such that X + &X has.a

closed orbit through pe For n =2 and in the special case where

p 1is recurreht i.e. such that for every neighborhood U of p,

un @t(p) £ @ for arbitrarily large values of +t, this problem was
already the crucial point in the theorem of the author mentioned above;

the case n> 2, p recurrent was recognized in [11] as an. important and
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difficult question. In [15] Pugh solves the closing Lemma for p
recurrect, n %>2, r = 1. In [16) he improves his result for p

non wandering and gets Gh' By doing this, ﬁhrough his verj difficult

and ingenious proof, he made a fundamental contribution to the qualitative
theory of differential question. But Pugh'!s proof is too long and com-
plicated and one is left with the impression that the true methods to

handle these questions are yet to be found.

5o The first integral theorem of Thom.

Let M =M and % be as before. A first integral of a
vector field X € % is a differentiable function f£: M —»R which
is constant along trajectories of X but 1s not constant on any
open set of M . For technical reasons (Morse-Sard theorem) we
consider ohly first integrals which are of class Cn. Traditionally,
to "integrate" a differential equation is to find more and more first
integrals. Of course they provide valuable information about fhe
given equation when they can be found. In an unpublished manuscript
R. Thom showed that the subset of % of all fields which do not
admit a first intégral is residual, his proof being based on.the
assumption that the closing Lemma is true. Now we indicate how this
theorem follows immediately from the GDT. For this we need only to

show that '3? being as in (4.1) then we have the following.
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(5.1) Theorem. If X eg then X admits no first integral f.

Proof. ILet X satisfy G,, 1= 4L, and let f: M =R bea first
integral of X of class Cn. From the Morse-Sard theorem there
is in f(M) an interval (a,b) made up of regular values. For
any a € (a,b), f_l(a) is an (n-1)-dimensional, compact, different-
iable manifold, invariant under X. Now f_l(a) contains no singularity
or closed orbit of X Dbecause these are generic and in f_l(a)
there is no room for the corresponding stable and unstable manifolds.
So the singularities and closed orbits of X are all located at the
critical levels of f. Considering any trajectory 7y in f_l(a),
o(7) Cif_l(a) which is not contained in the closure of the set
singularities and ciosed orbits, in contradiction with Gao The
theorem is proved.

The above argument actually shows also that
(5.2) no structurally stable system X in M admits a first

integral f.
This follows from the fact that a structurally stable

system gatisfies Gh and has only generic singularities and closed
orbits, a fact edsy to see . This is so whether we adopt the &

or non €-difinition of structural stability, so that (5.2) is true
in both cases. In the case of the €-definition (5.2) was proved
directly, without the use of the closing Lemma, by Arraut [4].
Clearly (5.1) and (5.2) remain true when f 1is only invariant

through X 1i.e. f 1is constant on trajectories of X and is
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allowed to be constant on some open sets of M but not on the

whole of M. The fact that no X ¢ g? admits an invariant function
throws some light on the global behavior of fhe stable and unstable
manifolds showing that they are somehow tied together to each other
and gives some indication in favor of a conjecture of Smale [19]

that the union of them all is dense in M.

6. First integrals and structural stability: a conjecture.

As above let M = M be compact, endowed with a Riemanian
metric, and let X C % Dbe the set of all structurally stable systems
on M.

Since % # £ in dimension n 2z 4, it is natural to ask what
lies in the closure of the structurally stable systems and in particular
if the equations of conservative Dynamics, all of which have one first
integral, are there. We assume that a first integral is a non degenerate

Morse function and make the following conjecture.

(6.1) If X € % has a first integral f then it can be

approximated by a structurally stable system i.e. X € >,

This conjecture can be considered as a generalization of
the fact that a harmonic oscillator, which is not structurally stable,
can be made so by the introduction of a small friction.

Below we indicate evidence for (6.1), actually we reduce
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(6.1) to a known problem. Consider the following perturbation of X,

Y = X+ & grad £

where € >0 isba small constaht. Then the only éingularities of Y
are those which are common to X and grad f and so they are finite
in number. Choose € so that vY has only generic singularifies.
Then every trajectory of Y different from a singularity connects two
singularities and along it f increaées with time, as if Y were a
gradient System. Now, using this fact and known techﬂiques, see for
instance [12], one can perturb Y to get a system Z such that

every non singular trajectory again connects two generic singularities
and besides all stable and unstable manifolds are transversal i.e. 2
satisfies Gi’ i =23 without closed orbits. Systems of this type

are usually said to be of Morse-Smale type.

The problem then reduces to show that Z 1is strupturally
stable., This isbgenerally believed to be true, but there are technical
difficulties, From what Smale says at the end of [17] our conjecture
may be considered to be a fact if n = 3. What Thom says informally
at the end of [24] ?ractically implies that it is true in general,

but his argument is not conclusive. A proof of (6.1) along the lines
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mentioned above would also be good to prove that on any compact
manifold there are structurally stable systems, also a worﬁhwhile
result. We intend to come back to this question soon. The truth
of (6.1) implies that the situation of [18], or any similar one,
can never be present on a mechanical problem.

As a final comment on this we may add that on a mechanical
situation where f is the energy function H the only equilibrium
points of Z are among the critical points of H and the fact that
they are generic (i.e. rigid) reminds us of the energy levels of

quantum mechanics.

T Further remarks on first integrals.

From what we saw above, on compact manifolds, the existence
of a first integral imposes a "stratification" on the set of trajectories

which turn out to be a very severe restriction and this is why, being
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incompatible with genericity first integrals are irrelevant for the
solution of the fundamental problem.

On a non compact M , see [12], the situation seems to
be different though. Take for instance in R2 the horizontal
unit field X = (1,0). If has a ¢ -first integral, is structurally
stable, and veryulikely it 1s a generic field in any reasonable
sense given to this expression. For a non compact M one should
require that a first inteéral f; besides being a non degenerate
Morse function, is such thét the topological type of the inverse
image does not change as long as we do not cross a critical wvalue.
This condition is satisfied when

f satisfies the condition (C) of Palais and Smale [21]: if S

is a subset of M on which |f| is bounded but on which grad f
is not bounded away from zero then there is a critical point of £
in S. |

Perhaps relevant along this line would be the consideration
of systems X on M which are totally integrable i.e. which admit

the maximum number of independent integrals T ; by independent

l’...’fn_l
one should mean independent except at some submanifold of dimension
< n-1.

On a totally integrable system there is no room for complicated

behavior of trajectories outside the critical levels and then one

may pose the following problem: to characterize the totally integrable
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systems.

Even for the case of a compact MF, n > 2, this ﬁight be
an interesting question.

This problem suggests that one consider the relationship
between singularities and first integrals. And then natural problems
are: what singularities can belong to a totally integrable systems ?;
given a generic singularity p such that not all eigenvalues have
the real part with the same sign, how many independent first integrals
do exist in a neighborhood of p ?

The author is indebted to J. McAlpin for discussions con-

cerning paragraphs 7 and 8.
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